

06680 Certificate No.

Page

1 of

4 Pages

Customer: Lam Geotechnics Limited

Address: 11/F, Centre Point, 181-185 Gloucester Road, Wanchai, Hong Kong.

Order No.: Q02553

Date of receipt

18-Nov-10

Item Tested

Description: Precision Integrating Sound Level Meter

Manufacturer: ACO

Model

: Type 6224

Serial No.

: 050112

Test Conditions

Date of Test: 19-Nov-10

Supply Voltage : --

Relative Humidity: (50 ± 25) %

Test Specifications

Ambient Temperature:

Calibration check.

Ref. Document/Procedure: Z01.

 $(23 \pm 3)^{\circ}C$

Test Results

All results were within the IEC 651 Type 1 & 804 Type I Specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S017A

Multi-Function Generator

00804

SCL-HKSAR

S024

Sound Level Calibrator

04062

NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by:

This Certificate is issued by:

Hong Kong Calibration Ltd.

23-Nov-10

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Certificate No. 06680

Page 2 of 4 Pages

Results:

1. SPL Accuracy

U	JT Setting			
Level Range (dB)	Weight	Time Const.	Applied Value (dB)	UUT Reading (dB)
20 - 100	L_{A}	Fast	94.0	94.3
		Slow		94.3
	L_{C}	Fast		94.3
30 - 120	L_{A}	Fast	94.0	94.4
		Slow		94.4
347	L_{C}	Fast		94.4
30 – 120	L_{A}	Fast	114.0	94.3
		Slow		94.3
	$L_{\rm C}$	Fast		94.3

IEC 651 Type 1 Spec. : \pm 0.7 dB

Uncertainty: ± 0.1 dB

2. Level Stability: 0.0 dB

IEC 651 Type 1 Spec. : ± 0.3 dB

Uncertainty: ± 0.01 dB

3. Linearity

3.1 Level Linearity

UUT Range	Applied	UUT Rdg	Variation	IEC 651 Type 1 Spec.
(dB)	Value (dB)	(dB)	(dB)	(Primary Indicator Range)
140	114.0	114.5	+0.1	± 0.7 dB
130	104.0	104.4	0.0	
120	94.0	94.4 (Ref.)	-0-	
110	84.0	84.1	-0.3	
100	74.0	74.2	-0.2	
90	64.0	64.1	-0.3	
80	54.0	54.1	-0.3	

Uncertainty: $\pm 0.1 \text{ dB}$

Certificate No. 06680

Page 3 of 4 Pages

3.2 Differential level linearity

UUT Range (dB)	Applied Value (dB)	UUT Rdg (dB)	Variation (dB)	IEC 651 Type 1 Spec.
120	84.0	84.1	-0.3	± 0.4
	94.0	94.4 (Ref.)		
	95.0	95.4	0.0	± 0.2

Uncertainty: ± 0.1 dB

4. Frequency Weighting

A weighting

Freque	ncy	Attenuation ((dB)	IEC 651 Type 1 5	Spec.
31.5	Hz	-39.3		$-39.4 \text{ dB}, \pm 1.5$	i dB
63	Hz	-26.2		- 26.2 dB, \pm 1.5	i dB
125	Hz	-16.1		- 16.1 dB, ± 1	dB
250	Hz	-8.7		- 8.6 dB, ± 1	dB
500	Hz	-3.3		- 3.2 dB, \pm 1	dB
1 1	кHz	0.0	(Ref)	$0 \text{ dB}, \pm 1$	dB
2 1	кHz	+1.3		+ 1.2 dB, ± 1	dB
4 1	кHz	+0.9		+ 1.0 dB, ± 1	dB
8 1	кHz	-1.2		- 1.1 dB, + 1.5 dB	~ -3 dB
16 1	кHz	-5.8		- 6.6 dB, + 3 dB	~ - ∞

Uncertainty: ± 0.1 dB

Certificate No. 06680

Page 4 of 4 Pages

4. Time Averaging

Applied Burst duty Factor	Applied Leq Value (dB)	UUT Reading (dB)	IEC 804 Type 1 Spec.
continuous	40.0	40.0	
1/10	40.0	39.9	± 0.5 dB
$1/10^2$	40.0	39.9	
$1/10^{3}$	40.0	40.3	± 1.0 dB
$1/10^4$	40.0	40.3	

Uncertainty: ± 0.1 dB

Remark: 1. UUT: Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.

3. Atmospheric Pressure: 1 009 hPa.

----- END -----

Certificate No. 06681

Page 1 of 2 Pages

Customer: Lam Geotechnics Limited

Address: 11/F, Centre Point, 181-185 Gloucester Road, Wanchai, Hong Kong.

Order No.: Q02553

Date of receipt

18-Nov-10

Item Tested

Model

Description: Sound Level Calibrator (EL469)

Manufacturer: ACO

: ---

Serial No.

: 050213

Test Conditions

Date of Test: 19-Nov-10

Supply Voltage : --

950

Ambient Temperature :

(23 ± 3)°C

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: F21, Z02.

Test Results

All results were within the IEC 942 Class 1 specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No.	Description	Cert. No.	Traceable to
S014	Spectrum Analyzer	03926	NIM-PRC & SCL-HKSAR
S024	Sound Level Calibrator	04062	NIM-PRC & SCL-HKSAR
S041	Universal Counter	04461	SCL-HKSAR
S206	Sound Level Meter	04462	SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by:

P. F. Wong

Approved by:

23-Nov-10

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong.

Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Dorothy Cheuk

Certificate No. 06681

Page 2 of 2 Pages

Results:

1. Level

UUT Nominal Value (dB)	Measured Value (dB)	IEC 942 Class 1 Spec.
94	94.22	± 0.3 dB

The above measured values are the mean of 3 measurements.

Uncertainty: ± 0.1 dB

2. Frequency

UUT Nominal Value	Measured Value		IEC 942 Class 1 Spec.
1 kHz	0.9834	kHz	± 2 %

Uncertainty: $\pm 3.6 \times 10^{-6}$

3. Level Stability: 0.0 dB

IEC 942 Class 1 Spec. : ± 0.1 dB

Uncertainty: ± 0.01 dB

4. Total Harmonic Distortion : < 0.2 %

IEC 942 Class 1 Spec. : < 3 %Uncertainty : $\pm 2.3 \%$ of reading

Remark: 1. UUT: Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.

3. Atmospheric Pressure: 1 009 hPa.

----- END -----

Certificate No. 03250A

Page

3 Pages

Customer: Lam Geotechnics Limited

Address: 11/F., Centre Point, 181-185 Gloucester Road, Wanchai, Hong Kong

Order No.: Q01282

Date of receipt

14-Jun-10

Item Tested

Description: Precision Integrating Sound Level Meter

Manufacturer: ONO SOKKI

Model

: LA-5110

Serial No.

: 72302293

Test Conditions

Date of Test: 21-Jun-10

Supply Voltage

Ambient Temperature:

(23 ± 3)°C

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: Z01.

Test Results

All results were within the IEC 651 Type 1 & IEC 804 Class 1 specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S017

Multi-Function Generator

C101623

SCL-HKSAR

S024

Sound Level Calibrator

93758

NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by

This Certificate is issued by

Hong Kong Calibration Ltd.

Date:

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

Certificate No. 03250A

Page 2 of 3 Pages

Results:

1. SPL Accuracy

U	UT Setting	,			
		Frequency	Dynamic	Applied Value	UUT Reading
Level Range	Filter	Weighting	Characteristic	(dB)	(dB)
40 - 100 dB	OFF	A	FAST	94.03	94.0
			SLOW		94.0
		C	FAST		94.0
60 - 120 dB	OFF	A	FAST	94.03	94.0
			SLOW		94.0
	2	C	FAST		94.0
60 - 120 dB	OFF	A	FAST	113.97	113.9
	16		SLOW		113.9
		С	FAST		113.9

IEC 651 Type 1 Spec. : \pm 0.7 dB

Uncertainty: ± 0.1 dB

2. Level Stability: 0.0 dB

IEC 651 Type 1 Spec. : \pm 0.3 dB

Uncertainty: $\pm 0.01 \text{ dB}$

3. Linearity

3.1 Level Linearity

J.I LCVCI	Lincarity			
UUT Range	Applied	UUT Reading	Variation	IEC 651 Type 1 Spec.
(dB)	Value (dB)	(dB)	(dB)	(Primary Indicator Range)
130	114.0	114.1	+0.1	± 0.7 dB
130	104.0	104.1	+0.1	
120	94.0	94.0 (Ref.)	(- -	
110	84.0	84.0	0.0	
100	74.0	74.1	+0.1	
90	64.0	64.1	+0.1	1
80	54.0	54.0	0.0	1

Uncertainty: ± 0.1 dB

Certificate No. 03250A

Page 3 of 3 Pages

3.2 Differential level linearity

UUT Range	Applied	UUT Reading		
(dB)	Value (dB)	(dB)	Variation (dB)	IEC 651 Type 1 Spec.
120	84.0	84.0	0.0	± 0.4
	94.0	94.0 (Ref.)		8
	95.0	95.0	0.0	± 0.2

Uncertainty: $\pm 0.1 \text{ dB}$

4. Frequency Weighting

A weighting

Frequency	Attenuation (dB)	IEC 651 Type 1 Spec.
31.5 Hz	-40.5	- 39.4 dB, ± 1.5 dB
63 Hz	-26.9	- 26.2 dB, ± 1.5 dB
125 Hz	-16.9	- 16.1 dB, ± 1 dB
250 Hz	-9.1	- 8.6 dB, ± 1 dB
500 Hz	-3.5	- 3.2 dB, ± 1 dB
1 kHz	0.0 (Ref.)	$0 \text{ dB}, \pm 1 \text{ dB}$
2 kHz	+1.5	+ 1.2 dB, ± 1 dB
5 kHz	+1.2	+ 1.0 dB ,± 1 dB
8 kHz	-1.0	- 1.1 dB , + $1.5 \text{ dB} \sim -3 \text{ dB}$
16 kHz	-7.0	- 6.6 dB, + 3 dB ~-∞

Uncertainty: $\pm 0.1 \text{ dB}$

5. Time Averaging

Applied Burst duty Factor	Applied Leq Value (dB)	UUT Reading (dB)	IEC 804 Type 1 Spec.
continuous	40.0	40.0	
1/10	40.0	40.0	± 0.5 dB
$1/10^2$	40.0	40.0	1
$1/10^3$	40.0	40.1	± 1.0 dB
1/104	40.0	39.9	

Uncertainty: ± 0.1 dB

Remarks: 1. UUT: Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure: 1 000 hPa.
- 4. This certificate is supersede our former certificate no. 03250.

----- END -----

Certificate No. 03445

of 2 Pages Page

Customer: Lam Geotechnics Limited

Address: 11/F., Centre Point, 181-185 Gloucester Road, Wanchai, Hong Kong

Order No.: Q01282

Date of receipt

14-Jun-10

Item Tested

Description: Sound Level Calibrator (EL078)

Manufacturer: ONO SOKKI

Model : SC-2110 Serial No.

: 00393

Test Conditions

Date of Test: 21-Jun-10

Supply Voltage : --

Ambient Temperature: (23 ± 3)°C Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: Z02.

Test Results

All results were within the IEC 942 Class 2 specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description Cert. No. **Due Date** Traceable to

S024 Sound Level Calibrator 93758 16-Jul-10 NIM-PRC & SCL-HKSAR

S041 **Universal Counter** 94005 6-Aug-10 SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by:

This Certificate is issued by:

Hong Kong Calibration Ltd.

Date: 25-Jun-10

Unit 8B, 24IF., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong Tel: 2425 8801 Fax: 2425 8646

Certificate No. 03445

Page 2 of 2 Pages

Results:

1. Level Accuracy (at 1 kHz)

UUT Nominal Value (dB)	Measured Value (dB)	IEC 942 Class 2 Spec.
94	94.05	± 0.5 dB

Uncertainty: ± 0.2 dB

2. Frequency Accuracy

UUT Nominal Value (kHz)	Measured Value (kHz)	IEC 942 Class 2 Spec.
1	0.998	± 4 %

Uncertainty: ± 0.1 %

3. Level Stability: 0.0 dB

IEC 942 Class 2 Spec. : ± 1.2 dB

Uncertainty: ± 0.01 dB

4. Total Harmonic Distortion : < 1.2 %

IEC 942 Class 1 Spec. : < 3 % Uncertainty : ± 2.3 % of reading

Remark: 1. UUT: Unit-Under-Test

- 2. The above measured values are the mean of 3 measurements.
- 3. The uncertainty claimed is for a confidence probability of not less than 95%.
- 4. Atmospheric Pressure: 1 000 hPa.

----- END -----

SPECTRIS CHINA LIMITED 思百吉中國有限公司

Page 1 of 2

CERTIFICATE OF CALIBRATION

Certificate No.: 2KS100612-7

Calibration of:

Description:

Sound Level Meter

Microphone

Manufacture:

Brüel & Kjær

Type No.

2250

4950

Serial No. :

2722310

2698702

Client:

Lam Geotechnics Limited

11/F, Centre Point

181-185 Gloucester Road

Wanchai Hong Kong

Calibration Conditions:

Air Temperature :

23 °C

Air Pressure

101.9 **kPa**

Relative Humidity:

62 %

Test Specifications:

The Sound Level Meter has been calibrated in accordance with the requirements as specified in IEC 60651 and IEC 60804 type 1, and vendor specific procedures.

The measurements has been performed with the assistance of:

Brüel & Kjær's Sound Level Meter Calibration System B&K 9600 CAL2238A, Ver.25.10.1999 The standard(s) and instrument(s) used in the calibration are traceable to international standard and are calibrated on a schedule which is adjusted to maintain the required accuracy level.

Test Result:

A list of the performed (sub) tests is stated on page 2 of this certificate. Actual Measurement are documented on worksheet.

Date of Calibration: 22 July, 2010

Certificate issued: 22 July, 2010

Calibrated By:

Approved signatory:

Dai Bin

Jacky Leung

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.

Unit 706 7/F., Miramar Tower, 132 Nathan Road, Tsim Sha Tsui, Kowloon, Hong Kong 香港九龍尖沙咀彌敦道132號美麗華大廈7樓706室

Tel: (852) 2548 7486 Fax: (852) 2858 1168

CERTIFICATE OF CALIBRATION

Certificate No.: 2KS100612-7 Page 2 of 2

Results:

List of performed (sub) test with test status:

"OK" Means the result of the (sub)test is Inside the tolerances stated in the test specifications.

"-" Means the result of the (sub)test is Outside these tolerances.

Test:	Subtest:	Status:
Noise	A	OK
Noise	C	OK
Noise	Lin	OK
Frequency Weighting	A	OK
Frequency Weighting	C	OK
Frequency Weighting	Lin	OK
Level Range Control	1000 Hz	OK
Linearity Range	SPL 10dB 4000 Hz	OK
Linearity Range	SPL 1dB 1000 Hz	OK
Linearity Range	Leq	OK
Linearity Range	SEL	OK
RMS Detector	CF 3	OK
RMS Detector	CF 5	OK
RMS Detector	CF 10	OK
RMS Detector	Symmetry	OK
Time Weighting	Difference Indication	OK
Time Weighting	Single Burst FAST	OK
Time Weighting	Single Burst SLOW	OK
Time Weighting	Single Burst IMPULSE	OK
Time Weighting	Repetitive Burst	OK
Time Weighting	Peak	OK
Time Averaging		OK
Pulse Range		OK
Overload	SPL	OK
Overload	SEL	OK
Acoustic Response	A	OK
Acoustic Response	Lin	OK

Calibration Equipment:

Level Meter Calil	bration Systen	n B&K 9600 C	CAL2238A, Ver.25.10.1999
Make & Model:	Serial No.:	Last Cal. Date:	Traceable to:
Datron 1281	27361	30 Sept, 2009	HKSCL (HOKLAS)
B&K 1049	1314978	Test	B&K Conformance
B&K 5918	1482949	Test	B&K Conformance
B&K 4226	1843103	11 Aug 2009	NPL via B&K (DANAK)
	Make & Model: Datron 1281 B&K 1049 B&K 5918	Make & Model: Serial No.: Datron 1281 27361 B&K 1049 1314978 B&K 5918 1482949	Datron 1281 27361 30 Sept, 2009 B&K 1049 1314978 Test B&K 5918 1482949 Test

Calibrated By: Dur RM
Date: 22 July 2010

Checked By: Date: 22 July, 2010

Brüel & Kjær P

SPECTRIS CHINA LIMITED 思百吉中國有限公司

CERTIFICATE OF CALIBRATION

Certificate No.: 2KS100705-2	Page 1	of 2	2
------------------------------	--------	--------	---

Calibration of:

Description:

Sound Level Meter

, Microphone

Manufacture:

Brüel & Kjær

.

Type No.

2250

4950

Serial No. :

2722311

2698703

Client:

Lam Geotechnics Limited

11/F, Centre Point

181-185 Gloucester Road

Wanchai Hong Kong

Calibration Conditions:

Air Temperature :

23 °C

Air Pressure

101.9 **kPa**

Relative Humidity:

62 %

Test Specifications:

The Sound Level Meter has been calibrated in accordance with the requirements as specified in IEC 60651 and IEC 60804 type 1, and vendor specific procedures.

The measurements has been performed with the assistance of:

Brüel & Kjær's Sound Level Meter Calibration System B&K 9600 CAL2238A, Ver.25.10.1999 The standard(s) and instrument(s) used in the calibration are traceable to international standard and are calibrated on a schedule which is adjusted to maintain the required accuracy level.

Test Result:

Calibrated By:

A list of the performed (sub) tests is stated on page 2 of this certificate. Actual Measurement are documented on worksheet.

Date of Calibration: 03 Aug, 2010

Certificate issued: 03 Aug, 2010

Approved signatory:

Inolar Launa

Dai Bin

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.

Unit 706 7/F., Miramar Tower, 132 Nathan Road, Tsim Sha Tsui, Kowloon, Hong Kong香港九龍尖沙咀彌敦道132號美麗華大廈7樓706室

Dun Bin

Tel: (852) 2548 7486 Fax: (852) 2858 1168

CERTIFICATE OF CALIBRATION

Certificate No.: 2KS100705-2 Page 2 of 2

Results:

List of performed (sub) test with test status:

"OK" Means the result of the (sub)test is Inside the tolerances stated in the test specifications.

"-" Means the result of the (sub)test is Outside these tolerances.

Test:	Subtest:	Status :
Noise	A	OK
Noise	C	OK
Noise	Lin	OK
Frequency Weighting	A	OK
Frequency Weighting	C	OK
Frequency Weighting	Lin	OK
Level Range Control	1000 Hz	OK
Linearity Range	SPL 10dB 4000 Hz	OK
Linearity Range	SPL 1dB 1000 Hz	OK
Linearity Range	Leq	OK
Linearity Range	SEL	OK
RMS Detector	CF 3	OK
RMS Detector	CF 5	OK
RMS Detector	CF 10	OK
RMS Detector	Symmetry	OK
Time Weighting	Difference Indication	OK
Time Weighting	Single Burst FAST	OK
Time Weighting	Single Burst SLOW	OK
Time Weighting	Single Burst IMPULSE	OK
Time Weighting	Repetitive Burst	OK
Time Weighting	Peak	OK
Time Averaging		OK
Pulse Range		OK
Overload	SPL	OK
Overload	SEL	OK
Acoustic Response	A	OK
Acoustic Response	Lin	OK

Calibration Equipment:

Brüel & Kjær's Sound	Level Meter Calib	oration Systen	n B&K 9600 CA	L2238A, Ver.25.10.1999
Description:	Make & Model:	Serial No.:	Last Cal. Date:	Traceable to:
Digital Multi-meter	Datron 1281	27361	30 Sept, 2009	HKSCL (HOKLAS)
Sine/Noise Generator	B&K 1049	1314978	Test	B&K Conformance
Test Waveform Generator	B&K 5918	1482949	Test	B&K Conformance
Acoustical Calibrator	B&K 4226	1843103	11 Aug 2009	NPL via B&K (DANAK)

Calibrated By: Dw & w

Date: 03 Aug 2010

Checked By Date: 03 Aug, 2010

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

ALS Technichem (HK) Ptv Ltd

Environmental Division

CERTIFICATE OF ANALYSIS

CONTACT:

MS CHERRY MAK

CLIENT:

LAM GEOTECHNICS LIMITED

ADDRESS:

11/F., CENTRE POINT,

181-185 GLOUCESTER ROAD.

WAN CHAI, HONG KONG.

PROJECT:

Batch:

HK1022442

AMENDMENT NO:

LABORATORY:

HONG KONG

DATE RECEIVED: DATE OF ISSUE:

27/09/2010

SAMPLE TYPE:

12/10/2010

No. of SAMPLES:

EQUIPMENT

COMMENTS

The calibration procedure used for the analysis has been applied for the calibration of the above instrument.

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F

Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsenviro.com

Mr. Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

Other ALS Environmental Laboratories

AUSTRALIA

Brisbane

Sydney

Melbourne

Newcastle

AMERICAS

Hong Kong Singapore

Bogor

Kuala Lumpur

Vancouver Santiago

Amtofagasta

Lima

Abbreviations: % SPK REC denotes percentage spike recovery

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

CHK denotes duplicate check sample LOR denotes limit of reporting

LCS % REC denotes Laboratory Control Sample percentage recovery

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

Page 1 of 2

Batch:

HK1022442

Amendment No:

12/10/2010

Date of Issue: Client:

LAM GEOTECHNICS LIMITED

Client Reference:

Calibration of Multimeter

Item:

Multimeter

Model No.: YSI Sonde 600XL

ALS Lab ID:

HK1022442-001

Equipment No.: EL424

Date of Calibration: 28 September, 2010

Serial No.: 05C1607

Testing Results:

рΗ

Expected Reading	Recording Reading
4.00 7.00 10.0	3.98 7.10 9.93
Allowing Deviation	± 0.2 unit

Testing Method:

APHA (20th edition), 4500-H⁺B

Conductivity

Expected Reading	Recording Reading
146.9 uS/cm 6667 uS/cm 12890 uS/cm 58670 uS/cm	144.0 uS/cm 6302 uS/cm 12303 uS/cm 55501 uS/cm
Allowing Deviation	± 10%

Testing Method:

APHA (20th edition), 2510B

Temperature

Expected Reading	Recording Reading
15.0 °C 23.0 °C 35.0 °C	14.8 °C 22.7 °C 34.5 °C
Allowing Deviation	±2.0 ⁰ C

Testing Method:

In-House Method

Salinity

Expected Reading	Recording Reading
0 g/L 10.0 g/L 20.0 g/L 30.0 g/L	0 g/L 9.84 g/L 20.1 g/L 30.9 g/L
Allowing Deviation	± 10%

Testing Method:

APHA (20th edition), 2520 A and B

DO

Expected Reading	Recording Reading
5.63 mg/L 6.63 mg/L 7.81 mg/L	5.55 mg/L 6.60 mg/L 7.92 mg/L
Allowing Deviation	± 0.2 mg/L

Testing Method:

APHA (20th edition), 4500-OC & G

Mr Chan Kwok Rai, Godfrey Laboratory Manager - Hong Kong

ALS Technichem (HK) Pty Ltd

CONTACT: MS CHERRY MAK

CLIENT:

LAM GEOTECHNICS LIMITED

ADDRESS:

11/F., CENTRE POINT,

181-185 GLOUCESTER ROAD, WAN CHAI, HONG KONG.

WORK ORDER: HK1027230

LABORATORY:

HONG KONG

DATE RECEIVED: DATE OF ISSUE:

17/11/2010

SAMPLE TYPE:

18/11/2010

EQUIPMENT

No. of SAMPLES:

COMMENTS

The calibration procedure used for the analysis has been applied for the calibration of the above instrument.

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F

Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG

Phone: 852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsenviro.com

Mr. Fung Lim Chee, Richard General Manager

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Abbreviations: % SPK REC denotes percentage spike recovery

CHK denotes duplicate check sample LOR denotes limit of reporting

LCS % REC denotes Laboratory Control Sample percentage recovery

Page 1 of 2

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Work Order: Date of Issue: HK1027230

18/11/2010

Client:

LAM GEOTECHNICS LIMITED

Client Reference:

Calibration of Multimeter

Item:

Multimeter

Model No.: Multi 3430 Set G

ALS Lab ID:

HK1027230-001

Equipment No.: --

Date of Calibration: 18 November, 2010

Serial No.: 10410294

Testing Results:

рΗ

Expected Reading	Recording Reading
4.00	4.12
7.00	7.09
10.0	9.98
Allowing Deviation	± 0.2 unit

Testing Method:

APHA (20th edition), 4500-H⁺B

Temperature

13.9 °C 21.8 °C 32.8 °C

Testing Method:

In-House Method

Salinity

Expected Reading	Recording Reading
0 g/L 10.0 g/L 20.0 g/L 30.0 g/L	0 g/L 10.3 g/L 20.6 g/L 31.0 g/L
Allowing Deviation	± 10%

Testing Method:

APHA (20th edition), 2520 A and B

Dissolved Oxygen

Expected Reading	Recording Reading
5.56 mg/L 6.69 mg/L 8.39 mg/L	5.52 mg/L 6.66 mg/L 8.37 mg/L
Allowing Deviation	± 0.2 mg/L

Testing Method:

APHA (20th edition), 4500-OC & G

Mr. Fung Lim Chee, Richard General Manager

ALS Technichem (HK) Pty Ltd

ALS Environmental

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

ALS Technichem (HK) Ptv Ltd

Environmental Division

CERTIFICATE OF ANALYSIS

CONTACT:

MS CHERRY MAK

CLIENT: ADDRESS: LAM GEOTECHNICS LIMITED 11/F., CENTRE POINT,

181-185 GLOUCESTER ROAD, WAN CHAI, HONG KONG.

WORK ORDER:

HK1026497

LABORATORY:

HONG KONG

DATE RECEIVED: DATE OF ISSUE:

10/11/2010 11/11/2010

SAMPLE TYPE:

EQUIPMENT

No. of SAMPLES:

COMMENTS

The calibration procedure used for the analysis has been applied for the calibration of the above instrument.

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsenviro.com

Mr Chan Kwok Fai. Godfrey Hong Kong Laboratory Manager

Other ALS Environmental Laboratories

AUSTRALIA

AMERICAS

Brisbane Melbourne Sydney Newcastle

Hong Kong Singapore Kuala Lumpur

Bogor

Vancouver Santiaao Amtofagasta

Lima

Abbreviations: % SPK REC denotes percentage spike recovery CHK denotes duplicate check sample

LOR denotes limit of reporting LCS % REC denotes Laboratory Control Sample percentage recovery

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

Batch:

HK1026497

Date of Issue:

11/11/2010

Client:

LAM GEOTECHNICS LIMITED

Client Reference:

Calibration of Turbidimeter

Item:

ALS Lab ID:

TURBIDIMETER

HK1026497-001

Date of Calibration: 10 November, 2010

Model No.: 2100P

Equipment No.: EN06

Serial No.: 1000032935

Testing Results:

Turbidity

Expected Reading	Recording Reading	
0.00 NTU	0 20 NTU	
0.00 NTU	0.20 NTU	
4.00 NTU	3.82 NTU	
40.0 NTU	38.2 NTU	
80.0 NTU	78.5 NTU	
400 NTU	373 NTU	
Allowing Deviation	± 10%	

Testing Method:

APHA (19th edition), 2130B

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

ALS Technichem (HK) Pty Ltd

CONTACT:

MS CHERRY MAK

CLIENT:

LAM GEOTECHNICS LIMITED

ADDRESS:

11/F., CENTRE POINT,

181-185 GLOUCESTER ROAD. WAN CHAI. HONG KONG.

WORK ORDER:

HK1027605

LABORATORY:

HONG KONG

DATE RECEIVED:

20/11/2010

DATE OF ISSUE:

24/11/2010

SAMPLE TYPE:

EOUIPMENT

No. of SAMPLES:

COMMENTS

The calibration procedure used for the analysis has been applied for the calibration of the above instrument.

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG

Phone: 852-2610 1044

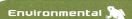
Fax:

852-2610 2021

Email:

hongkong@alsenviro.com

Mr Chan Kwok Godfrey Laboratory Manager Hong Kong


This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Abbreviations: % SPK REC denotes percentage spike recovery

CHK denotes duplicate check sample LOR denotes limit of reporting

LCS % REC denotes Laboratory Control Sample percentage recovery

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Work Order: Date of Issue: HK1027605

Client:

24/11/2010 LAM GEOTECHNICS LIMITED

Client Reference:

Calibration of Turbidimeter

Item:

TURBIDIMETER

ALS Lab ID:

HK1027605-001

Date of Calibration: 22 November, 2010

Model No.: HACH 2100P

Equipment No.: EL148

Serial No.: 931000003861

Testing Results:

Turbidity

Expected Reading	Recording Reading
0.00 NTU	0.27 NTU
0.00 NTU	0.27 NTU
4.00 NTU	4.24 NTU
40.0 NTU	38.7 NTU
80.0 NTU	76.1 NTU
400 NTU	392 NTU
Allowing Deviation	± 10%

Testing Method:

APHA (19th edition), 2130B

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

ALS Technichem (HK) Pty Ltd

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

	•	Rootsmeter Orifice I.I	•	833620 0005	Ta (K) - Pa (mm) -	298 745.49
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00	1.3860 0.9740 0.8730 0.8320 0.6850	3.2 6.4 7.9 8.8 12.7	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9767 0.9725 0.9704 0.9693 0.9641	0.7047 0.9985 1.1116 1.1650 1.4075	1.4006 1.9808 2.2146 2.3227 2.8013		0.9957 0.9914 0.9893 0.9882 0.9829	0.7184 1.0179 1.1332 1.1877 1.4349	0.8941 1.2645 1.4137 1.4828 1.7883
Qstd slop intercept coefficie	= (b) $=$	1.99628 -0.00699 0.99995		Qa slope intercept coefficie	t (b) =	1.25003 -0.00446 0.99995
y axis =	SORT [H20 (I	Pa/760) (298/'	 Ta)	v axis =	SORT [H2O (T	(a/Pa)]

CALCULATIONS

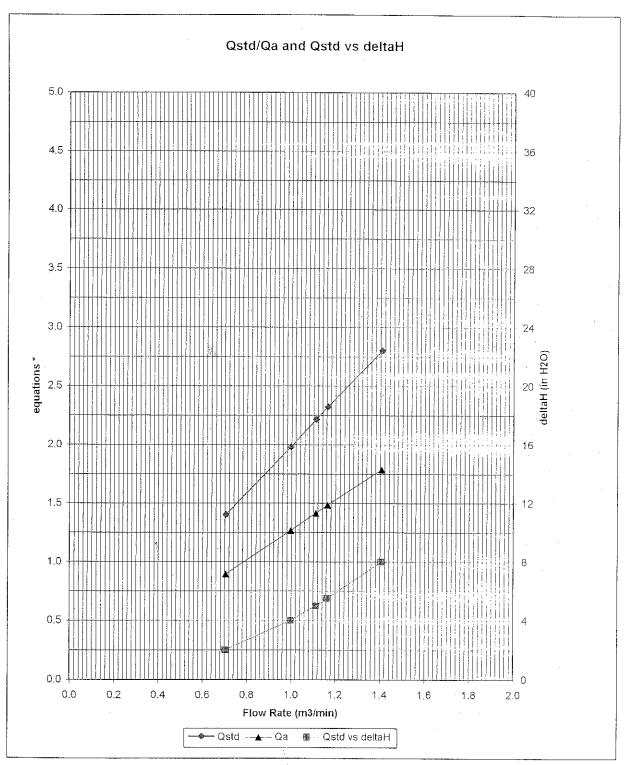
Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)

Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:


Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$

 $\widetilde{Q}a = 1/m\{[\widetilde{SQRT} H2O(Ta/Pa)] - b\}$

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

* y-axis equations:

Qstd series:

$$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$$

Qa series:

$$\sqrt{\left(riangle ext{H} \left(ag{Ta} imes ext{Pa}
ight)
ight)}$$

#0005

Lam Geotechincs Limited

Calibration Data for High Volume Sampler (TSP Sampler)

Location :		CMA1b		gii volullie Sai	Calbrati	-	: :	09-Oct-10
Equipment no. :		EL452		Calbration Due Date			:	09-Dec-10
CALIBRATION OF CONT	INUOUS F	LOW REC	<u>ORDER</u>					
			ļ	Ambient Condition				
Temperature, T _a		303		Kelvin Pressure,	Pa		1009	mmHg
			Orifice Tra	ınsfer Standard Infori	mation			
Equipment No.	EL086	(Serial no.	9833620)	Slope, m _c 1.9	9628	Intercept, bo	:	-0.06990
Last Calibration Date		28-Jun-1	0	(H	x P _a / 101	3.3 x 298 /	(T _a) 1	/2
Next Calibration Date		28-Jun-1	1		$= m_c x$	$Q_{std} + b_c$		
			(Calibration of RSP				
Calibration	Mai	nometer Re	eading	Q _{std}	Continu	ous Flow		IC
Point	н (inches of v	vater)	(m ³ / min.)	Reco	rder, W	(W(P _a /10	013.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-axis	(C	FM)		Y-axis
1	6.4	6.4	12.8	1.8086	(60		59.3765
2	5.1	5.1	10.2	1.6182		52		51.4596
3	4.0	4.0	8.0	1.4371	4	46		45.5220
4	2.4	2.4	4.8	1.1211	;	36		35.6259
5	1.5	1.5	3.0	0.8936	2	24		23.7506
By Linear Regression of Y	on X							
	Slope, m	=	37.3	775	Intercept, b =	= -{	8.2748	
Correlation C		=	0.99					
Calibration	Accepted	=	Yes/P	\0 **				
* if Correlation Coefficient	< 0.990, ch	neck and re	calibration ag	ain.				
** Delete as appropriate.								
Remarks :								
Calibrated by	[Derek Lo			Checke	d by	:	Cherry Mak
Date		9-Oct-10			Date		:	9-Oct-10

Lam Geotechincs Limited

Calibration Data for High Volume Sampler (TSP Sampler)

Location :		CMA1b			Calbration Date			:	: 04-Dec-10		
Equipment no. :		EL452				Calbra	ition Due Date	:	04-Feb-11		
CALIBRATION OF CONT	INUOUS F	LOW REC	ORDER								
	(20.55 52 549 45 52 55 55			Ambient Co	ondition			25 72 35 15 115 23 45 17			
Temperature, T _a		297		Kelvin	Pressure, Pa			1015	mmHg		
			Orifice Tra	ınsfer Stan	dard Informa	tion		Parladel States			
Equipment No.	EL086	(Serial no.	9833620)	Slope, m _c	1.9962	28	Intercept, b	С	-0.06990		
Last Calibration Date		28-Jun-1	0		(Нх	/T _a) ^{1/}	2				
Next Calibration Date		28-Jun-1	1		3	m_c	$Q_{std} + b_c$				
	AND COMMENTS OF THE STATE OF TH			Calibration	of RSP				5. 140.525125125135431354015 5. 152.510.241155-92.553125		
Calibration	Mai	nometer Re	eading	(⊋ _{std}	Continuous Flow			IC		
Point	н	inches of v	water)	(m ³	/ min.)	Rec	order, W	(W(P _a /10	13.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	X-	-axis	(CFM)		Y-axis		
1	6.5	6.5	13.0	1.	8457		62		62.1564		
2	5.2	5.2	10.4	1.	6545		54		54.1362		
3	4.1	4.1	8.2	1.	4731		46		46.1160		
4	2.5	2.5	5.0	1.	1580		37		37.0933		
5	1.5	1.5	3.0	0.	9048		25		25.0630		
By Linear Regression of Y	on X										
	Slope, m	=	38.1	670	In:	tercept, b		-8.7966			
Correlation C	oefficient*	=	0.99	968							
Calibration	Accepted	=	Yes/	No**							
				. 		······································					
* if Correlation Coefficient	< 0.990, cl	heck and re	calibration ag	gain.							
** Delete as appropriate.											
Remarks :											
Calibrated by	I	Derek Lo				Check	ed by	:	Cherry Mak		
Date :		1-Dec-10				Date		:	4-Dec-10		

Lam Geotechincs Limited

Calibration Data for High Volume Sampler (TSP Sampler)

	anora	uon Da	ia iui mi	gri voiu	ine Sam	piei (13	or Sampi	ei)	
Location :		CMA2a				Calbra	tion Date	:	29-Oct-10
Equipment no.		EL449				Calbra	tion Due Date	:	29-Dec-10
CALIBRATION OF CONT	INUOUS F	LOW REC	ORDER						
	I		ı	Ambient Co	l e				
Temperature, T _a		305		Kelvin	Pressure, Pa	ı		1008	mmHg
			Orifice Tra	ınsfer Stan	dard Informa	tion			
Equipment No.	EL086	(Serial no.	9833620)	Slope, m _c	1.996	28	Intercept, bo	;	-0.06990
Last Calibration Date		28-Jun-1	0		(Hx	P _a / 10	13.3 x 298 i	$/T_a)$	1/2
Next Calibration Date		28-Jun-1	1		=	m _c x	$Q_{std} + b_c$		
			(Calibration	of RSP				
Calibration	Ма	nometer Re	eading	C	Q _{std}	Contin	uous Flow		IC
Point	н	(inches of v	water)	(m ³	/ min.)	Recorder, W		(W(P _a /	1013.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-	-axis	(CFM)			Y-axis
1	6.55	6.55	13.1	1.	8225		52		51.2652
2	5.2	5.2	10.4	1.	6276		45	44.3641	
3	3.95	3.95	7.9	1.	4231		40	39.4348	
4	2.5	2.5	5	1.	1393		30	29.5761	
5	1.5	1.5	3.0	0.	8904		21		20.7033
By Linear Regression of Y	on X								
	Slope, m	=	32.3	499	In	tercept, b	= -	7.5929	
Correlation C	oefficient*	=	0.99	984					
Calibration	Accepted	=	Yes/	\0 **	-				
* if Correlation Coefficient	< 0.990, cl	heck and re	calibration ag	jain.					
** Delete as appropriate.									
Remarks :									
Calibrated by	1	Derek Lo				Checke	ed by	:	Cherry Mak
Date	2	29-Oct-10				Date		:	29-Oct-10